quimico

-

biologo

viernes, 29 de marzo de 2013

Aminoácido

Un aminoácido es una molécula orgánica con un grupo amino (-NH2) y un grupo carboxilo (-COOH ) unidos a un carbono central. Los aminoácidos más frecuentes y de mayor interés son aquellos que forman parte de las proteínas. Dos aminoácidos se combinan en una reacción de condensación que libera agua formando un enlace peptídico; estos dos "residuos" de aminoácido forman un dipéptido. Si se une un tercer aminoácido se forma un tripéptido y así, sucesivamente, para formar un polipéptido. Esta reacción tiene lugar de manera natural en los ribosomas. Todos los aminoácidos componentes de las proteínas son L-alfa-aminoácidos. Por lo tanto, están formados por un carbono alfa unido a un grupo carboxilo, a un grupo amino, a un hidrógeno y a una cadena (habitualmente denominada cadena lateral o radical R) de estructura variable, que determina la identidad y las propiedades de cada uno de los diferentes aminoácidos; existen cientos de radicales por lo que se conocen cientos de aminoácidos diferentes, pero sólo 20 (actualmente se consideran 22, los últimos fueron descubiertos en el año 2002) forman parte de las proteínas y tienen codones específicos en el código genético. La unión de varios aminoácidos da lugar a cadenas llamadas polipéptidos o simplemente péptidos, que se denominan proteínas cuando la cadena polipeptídica supera los 50 aminoácidos (100 aminoácidos para la mayoría de los autores) o la masa molecular total supera las 5,000 uma y, especialmente, cuando tienen una estructura tridimensional estable, definida. Estructura general de un aminoácido La estructura general de un aminoácido se establece por la presencia de un carbono central alfa unido a: un grupo carboxilo (rojo en la figura), un grupo amino (verde), un hidrógeno (en negro) y la cadena lateral (azul): "R" representa la cadena lateral, específica para cada aminoácido. Técnicamente hablando, se los denomina alfa-aminoácidos, debido a que el grupo amino (–NH2) se encuentra a un átomo de distancia del grupo carboxilo (–COOH). Ambos grupos funcionales son susceptibles a los cambios de pH, por eso ningún aminoácido se encuentra de esa forma, sino que se encuentra ionizado. Los aminoácidos a pH bajo (ácido) se encuentran mayoritariamente en su forma catiónica (con carga positiva), y a pH alto (básico) se encuentran en su forma aniónica (con carga negativa). Sin embargo, existe un pH específico para cada aminoácido, donde la carga positiva y la carga negativa son de la misma magnitud y el conjunto de la molécula es eléctricamente neutro. En este estado se dice que el aminoácido se encuentra en su forma de ion dipolar o zwitterión. Clasificación Existen muchas formas de clasificar los aminoácidos; las dos formas que se presentan a continuación son las más comunes. Según las propiedades de su cadena Otra forma de clasificar los aminoácidos de acuerdo a su cadena lateral. Los aminoácidos se clasifican habitualmente según las propiedades de su cadena lateral: Neutros polares, polares o hidrófilos : serina (Ser, S), treonina (Thr, T), cisteína (Cys, C), glutamina (Gln, Q), asparagina (Asn, N) , tirosina (Tyr, Y) y glicina (Gly, G). Neutros no polares, apolares o hidrófobos: alanina (Ala, A), valina (Val, V), leucina (Leu, L), isoleucina (Ile, I), metionina (Met, M), prolina (Pro, P), fenilalanina (Phe, F) y triptófano (Trp, W). Con carga negativa, o ácidos: ácido aspártico (Asp, D) y ácido glutámico (Glu, E). Con carga positiva, o básicos: lisina (Lys, K), arginina (Arg, R) e histidina (His, H). Aromáticos: fenilalanina (Phe, F), tirosina (Tyr, Y) y triptófano (Trp, W) (ya incluidos en los grupos neutros polares y neutros no polares). Según su obtención A los aminoácidos que necesitan ser ingeridos por el cuerpo se les llama esenciales; la carencia de estos aminoácidos en la dieta limita el desarrollo del organismo, ya que no es posible reponer las células de los tejidos que mueren o crear tejidos nuevos, en el caso del crecimiento. Para el ser humano, los aminoácidos esenciales son: Valina (Val, V) Leucina (Leu, L) Treonina (Thr, T) Lisina (Lys, K) Triptófano (Trp, W) Histidina (His, H) * Fenilalanina (Phe, F) Isoleucina (Ile, I) Arginina (Arg, R) * Metionina (Met, M) A los aminoácidos que pueden sintetizarse o producirse mediante la síntesis de aminoácidos en el organismo se los conoce como no esenciales y son: Alanina (Ala, A) Prolina (Pro, P) Glicina (Gly, G) Serina (Ser, S) Cisteína (Cys, C) ** Asparagina (Asn, N) Glutamina (Gln, Q) Tirosina (Tyr, Y) ** Ácido aspártico (Asp, D) Ácido glutámico (Glu, E) Estas clasificaciones varían según la especie. Se han aislado cepas de bacterias con requerimientos diferenciales de cada tipo de aminoácido. Según la ubicación del grupo amino Alfa-Aminoácidos: El grupo amino esta ubicado en el carbono Nº 2 de la cadena, es decir el primer carbono a continuación del grupo carboxilo. Este carbono se denomina carbono alfa. La gran mayoría de las proteínas están compuestas por restos de alfa-aminoácidos enlazados por enlaces amida. Beta-Aminoácidos: El grupo amino esta ubicado en el carbono Nº 3 de la cadena, es decir el segundo carbono a continuación del grupo carboxilo. Gama-Aminoácidos: El grupo amino esta ubicado en el carbono Nº 4 de la cadena, es decir el tercer carbono a continuación del grupo carboxilo.

viernes, 22 de marzo de 2013

Química Cuántica

La química cuántica es una rama de la química teórica en donde se aplica la mecánica cuántica y la teoría cuántica de campos. (Mecánica Cuántica) La química cuántica describe matemáticamente el comportamiento fundamental de la materia a escala molecular. Una aplicación de la química cuántica es el estudio del comportamiento de átomos y moléculas, en cuanto a sus propiedades ópticas, eléctricas, magnéticas y mecánicas, y también su reactividad química, sus propiedades redox, etc., pero también se estudian materiales, tanto sólidos extendidos como superficies. El estudio de química cuántica tiene una fuerte y activa relación con algunos campos científicos como lo son la física molecular, física atómica y fisicoquímica, y aportaciones han sido hechas tanto por físicos como por químicos. Frecuentemente se considera como primer cálculo de química cuántica el llevado a cabo por los científicos alemanes Walter Heitler y Fritz London (aunque a Heitler y a London se les suele considerar físicos). El método de Heitler y London fue perfeccionado por los químicos americanos John C. Slater y Linus Pauling, para convertirse en la teoría del enlace de valencia (o Heitler-London-Slater-Pauling (HLSP)). En este método, se presta atención particularmente a las interacciones entre pares de átomos, y por tanto se relaciona mucho con los esquemas clásicos de enlaces entre átomos. (Azufre)

viernes, 15 de marzo de 2013

Química Analítica

La química analítica (del griego ἀναλύω) es la rama de la química que tiene como finalidad el estudio de la composición química de un material o muestra, mediante diferentes métodos de laboratorio. Se divide en química analítica cuantitativa y química analítica cualitativa. La búsqueda de métodos de análisis más rápidos, selectivos y sensibles es uno de los objetivos esenciales perseguidos por los químicos analíticos. En la práctica, resulta muy difícil encontrar métodos analíticos que combinen estas tres cualidades y, en general, alguna de ellas debe ser sacrificada en beneficio de las otras. En el análisis industrial, la velocidad del proceso suele condicionar las características del método empleado, más que su sensibilidad. Por el contrario, en toxicología la necesidad de determinar sustancias en cantidades muy pequeñas puede suponer el empleo de métodos muy lentos y costosos. Los métodos que emplea el análisis químico pueden ser: Métodos químicos (se basan en reacciones químicas) o clásicos: análisis volumétrico análisis gravimétrico Métodos fisicoquímicos (se basan en interacciones físicas) o instrumentales: métodos espectrométricos métodos electroanalíticos métodos cromatográficos Los métodos analíticos se deben validar según la naturaleza del método analítico en: métodos de cuantificación; métodos de determinación de impurezas; pruebas límite; identidad. para estudiar éstos se determinan parámetros como linealidad, rango, especificidad, exactitud ,precisión, tolerancia, robustez y los límites de detección y cuantificación según sea el caso. En el caso de que no exista dicho método se propone uno mediante un diseño factorial para determinar las condiciones de trabajo.

viernes, 8 de marzo de 2013

Biología molecular

La Biología molecular es la disciplina científica que tiene como objetivo el estudio de los procesos que se desarrollan en los seres vivos desde un punto de vista molecular. Los métodos que emplea esta nueva ciencia son fundamentalmente los mismos que la Biofísica, Bioquímica, y Biología. Utiliza los análisis químicos, cualitativo y cuantitativo, los conocimientos de la Química orgánica, la Biología de microorganismos y de virus, etc., pero revisten especial importancia los nuevos métodos microanalíticos tanto físicos como químicos. Merecen destacarse la Microscopía electrónica, que permite resoluciones que alcanzan los 10 Amstrongs; la difracción de rayos X, que determina la estructura y disposición espacial de los átomos de las macromoléculas; la ultracentrifugación diferencial, tanto analítica como preparativa, que permite separaciones antes imposibles; la Cromatografía de gases, y, en fase líquida, la Espectrografía de infrarrojos, la Química con isótopos trazadores, la Espectrometría de masas, etc... Biólogos reconocidos: Francis Crick Rosalind Franklin Max Perutz James Dewey Watson François Jacob Christiane Nüsslein-Volhard Severo Ochoa Alberto Kornblihtt

viernes, 1 de marzo de 2013

Física Cuántica

La física cuántica, también conocida como mecánica ondulatoria, es la rama de la física que estudia el comportamiento de la materia cuando las dimensiones de ésta son tan pequeñas, en torno a 1.000 átomos, que empiezan a notarse efectos como la imposibilidad de conocer con exactitud la posición de una partícula, o su energía, o conocer simultáneamente su posición y velocidad, sin afectar a la propia partícula (descrito según el principio de incertidumbre de Heisenberg). Surgió a lo largo de la primera mitad del siglo XX en respuesta a los problemas que no podían ser resueltos por medio de la física clásica. Los dos pilares de esta teoría son: • Las partículas intercambian energía en múltiplos enteros de una cantidad mínima posible, denominado quantum (cuanto) de energía. • La posición de las partículas viene definida por una función que describe la probabilidad de que dicha partícula se halle en tal posición en ese instante. El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano.